Serveur d'exploration cluster fer-soufre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Glycogen branching enzyme controls cellular iron homeostasis via Iron Regulatory Protein 1 and mitoNEET.

Identifieur interne : 000237 ( Main/Exploration ); précédent : 000236; suivant : 000238

Glycogen branching enzyme controls cellular iron homeostasis via Iron Regulatory Protein 1 and mitoNEET.

Auteurs : Nhan Huynh [Canada] ; Qiuxiang Ou [Canada] ; Pendleton Cox [Canada] ; Roland Lill [Allemagne] ; Kirst King-Jones [Canada]

Source :

RBID : pubmed:31784520

Descripteurs français

English descriptors

Abstract

Iron Regulatory Protein 1 (IRP1) is a bifunctional cytosolic iron sensor. When iron levels are normal, IRP1 harbours an iron-sulphur cluster (holo-IRP1), an enzyme with aconitase activity. When iron levels fall, IRP1 loses the cluster (apo-IRP1) and binds to iron-responsive elements (IREs) in messenger RNAs (mRNAs) encoding proteins involved in cellular iron uptake, distribution, and storage. Here we show that mutations in the Drosophila 1,4-Alpha-Glucan Branching Enzyme (AGBE) gene cause porphyria. AGBE was hitherto only linked to glycogen metabolism and a fatal human disorder known as glycogen storage disease type IV. AGBE binds specifically to holo-IRP1 and to mitoNEET, a protein capable of repairing IRP1 iron-sulphur clusters. This interaction ensures nuclear translocation of holo-IRP1 and downregulation of iron-dependent processes, demonstrating that holo-IRP1 functions not just as an aconitase, but throttles target gene expression in anticipation of declining iron requirements.

DOI: 10.1038/s41467-019-13237-8
PubMed: 31784520
PubMed Central: PMC6884552


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Glycogen branching enzyme controls cellular iron homeostasis via Iron Regulatory Protein 1 and mitoNEET.</title>
<author>
<name sortKey="Huynh, Nhan" sort="Huynh, Nhan" uniqKey="Huynh N" first="Nhan" last="Huynh">Nhan Huynh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg, Edmonton, Alberta, T6G 2E9, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg, Edmonton, Alberta, T6G 2E9</wicri:regionArea>
<wicri:noRegion>T6G 2E9</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ou, Qiuxiang" sort="Ou, Qiuxiang" uniqKey="Ou Q" first="Qiuxiang" last="Ou">Qiuxiang Ou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg, Edmonton, Alberta, T6G 2E9, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg, Edmonton, Alberta, T6G 2E9</wicri:regionArea>
<wicri:noRegion>T6G 2E9</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cox, Pendleton" sort="Cox, Pendleton" uniqKey="Cox P" first="Pendleton" last="Cox">Pendleton Cox</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg, Edmonton, Alberta, T6G 2E9, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg, Edmonton, Alberta, T6G 2E9</wicri:regionArea>
<wicri:noRegion>T6G 2E9</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lill, Roland" sort="Lill, Roland" uniqKey="Lill R" first="Roland" last="Lill">Roland Lill</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032, Marburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032, Marburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Giessen</region>
<settlement type="city">Marbourg</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043, Marburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043, Marburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Giessen</region>
<settlement type="city">Marbourg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="King Jones, Kirst" sort="King Jones, Kirst" uniqKey="King Jones K" first="Kirst" last="King-Jones">Kirst King-Jones</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg, Edmonton, Alberta, T6G 2E9, Canada. kirst.king-jones@ualberta.ca.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg, Edmonton, Alberta, T6G 2E9</wicri:regionArea>
<wicri:noRegion>T6G 2E9</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31784520</idno>
<idno type="pmid">31784520</idno>
<idno type="doi">10.1038/s41467-019-13237-8</idno>
<idno type="pmc">PMC6884552</idno>
<idno type="wicri:Area/Main/Corpus">000185</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000185</idno>
<idno type="wicri:Area/Main/Curation">000185</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000185</idno>
<idno type="wicri:Area/Main/Exploration">000185</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Glycogen branching enzyme controls cellular iron homeostasis via Iron Regulatory Protein 1 and mitoNEET.</title>
<author>
<name sortKey="Huynh, Nhan" sort="Huynh, Nhan" uniqKey="Huynh N" first="Nhan" last="Huynh">Nhan Huynh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg, Edmonton, Alberta, T6G 2E9, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg, Edmonton, Alberta, T6G 2E9</wicri:regionArea>
<wicri:noRegion>T6G 2E9</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ou, Qiuxiang" sort="Ou, Qiuxiang" uniqKey="Ou Q" first="Qiuxiang" last="Ou">Qiuxiang Ou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg, Edmonton, Alberta, T6G 2E9, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg, Edmonton, Alberta, T6G 2E9</wicri:regionArea>
<wicri:noRegion>T6G 2E9</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cox, Pendleton" sort="Cox, Pendleton" uniqKey="Cox P" first="Pendleton" last="Cox">Pendleton Cox</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg, Edmonton, Alberta, T6G 2E9, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg, Edmonton, Alberta, T6G 2E9</wicri:regionArea>
<wicri:noRegion>T6G 2E9</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lill, Roland" sort="Lill, Roland" uniqKey="Lill R" first="Roland" last="Lill">Roland Lill</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032, Marburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032, Marburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Giessen</region>
<settlement type="city">Marbourg</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043, Marburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043, Marburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Giessen</region>
<settlement type="city">Marbourg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="King Jones, Kirst" sort="King Jones, Kirst" uniqKey="King Jones K" first="Kirst" last="King-Jones">Kirst King-Jones</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg, Edmonton, Alberta, T6G 2E9, Canada. kirst.king-jones@ualberta.ca.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg, Edmonton, Alberta, T6G 2E9</wicri:regionArea>
<wicri:noRegion>T6G 2E9</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nature communications</title>
<idno type="eISSN">2041-1723</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>1,4-alpha-Glucan Branching Enzyme (genetics)</term>
<term>1,4-alpha-Glucan Branching Enzyme (metabolism)</term>
<term>Active Transport, Cell Nucleus (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Down-Regulation (MeSH)</term>
<term>Drosophila (MeSH)</term>
<term>Drosophila Proteins (genetics)</term>
<term>Drosophila Proteins (metabolism)</term>
<term>Ecdysteroids (biosynthesis)</term>
<term>Endocrine Glands (metabolism)</term>
<term>Gene Expression Regulation (genetics)</term>
<term>Gene Knock-In Techniques (MeSH)</term>
<term>Gene Knockout Techniques (MeSH)</term>
<term>Heme (metabolism)</term>
<term>Iron (metabolism)</term>
<term>Iron Regulatory Protein 1 (genetics)</term>
<term>Iron Regulatory Protein 1 (metabolism)</term>
<term>Iron-Sulfur Proteins (metabolism)</term>
<term>Larva (metabolism)</term>
<term>Mitochondrial Proteins (genetics)</term>
<term>Mitochondrial Proteins (metabolism)</term>
<term>Porphyrias (genetics)</term>
<term>Porphyrias (metabolism)</term>
<term>RNA, Messenger (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>1,4-alpha-Glucan branching enzyme (génétique)</term>
<term>1,4-alpha-Glucan branching enzyme (métabolisme)</term>
<term>ARN messager (métabolisme)</term>
<term>Animaux (MeSH)</term>
<term>Drosophila (MeSH)</term>
<term>Ecdystéroïdes (biosynthèse)</term>
<term>Fer (métabolisme)</term>
<term>Ferrosulfoprotéines (métabolisme)</term>
<term>Glandes endocrines (métabolisme)</term>
<term>Hème (métabolisme)</term>
<term>Larve (métabolisme)</term>
<term>Porphyries (génétique)</term>
<term>Porphyries (métabolisme)</term>
<term>Protéine-1 de régulation du fer (génétique)</term>
<term>Protéine-1 de régulation du fer (métabolisme)</term>
<term>Protéines de Drosophila (génétique)</term>
<term>Protéines de Drosophila (métabolisme)</term>
<term>Protéines mitochondriales (génétique)</term>
<term>Protéines mitochondriales (métabolisme)</term>
<term>Régulation de l'expression des gènes (génétique)</term>
<term>Régulation négative (MeSH)</term>
<term>Techniques de knock-in de gènes (MeSH)</term>
<term>Techniques de knock-out de gènes (MeSH)</term>
<term>Transport nucléaire actif (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Ecdysteroids</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>1,4-alpha-Glucan Branching Enzyme</term>
<term>Drosophila Proteins</term>
<term>Iron Regulatory Protein 1</term>
<term>Mitochondrial Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>1,4-alpha-Glucan Branching Enzyme</term>
<term>Drosophila Proteins</term>
<term>Heme</term>
<term>Iron</term>
<term>Iron Regulatory Protein 1</term>
<term>Iron-Sulfur Proteins</term>
<term>Mitochondrial Proteins</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Ecdystéroïdes</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Gene Expression Regulation</term>
<term>Porphyrias</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>1,4-alpha-Glucan branching enzyme</term>
<term>Porphyries</term>
<term>Protéine-1 de régulation du fer</term>
<term>Protéines de Drosophila</term>
<term>Protéines mitochondriales</term>
<term>Régulation de l'expression des gènes</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Endocrine Glands</term>
<term>Larva</term>
<term>Porphyrias</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>1,4-alpha-Glucan branching enzyme</term>
<term>ARN messager</term>
<term>Fer</term>
<term>Ferrosulfoprotéines</term>
<term>Glandes endocrines</term>
<term>Hème</term>
<term>Larve</term>
<term>Porphyries</term>
<term>Protéine-1 de régulation du fer</term>
<term>Protéines de Drosophila</term>
<term>Protéines mitochondriales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Active Transport, Cell Nucleus</term>
<term>Animals</term>
<term>Down-Regulation</term>
<term>Drosophila</term>
<term>Gene Knock-In Techniques</term>
<term>Gene Knockout Techniques</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Drosophila</term>
<term>Régulation négative</term>
<term>Techniques de knock-in de gènes</term>
<term>Techniques de knock-out de gènes</term>
<term>Transport nucléaire actif</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Iron Regulatory Protein 1 (IRP1) is a bifunctional cytosolic iron sensor. When iron levels are normal, IRP1 harbours an iron-sulphur cluster (holo-IRP1), an enzyme with aconitase activity. When iron levels fall, IRP1 loses the cluster (apo-IRP1) and binds to iron-responsive elements (IREs) in messenger RNAs (mRNAs) encoding proteins involved in cellular iron uptake, distribution, and storage. Here we show that mutations in the Drosophila 1,4-Alpha-Glucan Branching Enzyme (AGBE) gene cause porphyria. AGBE was hitherto only linked to glycogen metabolism and a fatal human disorder known as glycogen storage disease type IV. AGBE binds specifically to holo-IRP1 and to mitoNEET, a protein capable of repairing IRP1 iron-sulphur clusters. This interaction ensures nuclear translocation of holo-IRP1 and downregulation of iron-dependent processes, demonstrating that holo-IRP1 functions not just as an aconitase, but throttles target gene expression in anticipation of declining iron requirements.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31784520</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>03</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2041-1723</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
<Month>11</Month>
<Day>29</Day>
</PubDate>
</JournalIssue>
<Title>Nature communications</Title>
<ISOAbbreviation>Nat Commun</ISOAbbreviation>
</Journal>
<ArticleTitle>Glycogen branching enzyme controls cellular iron homeostasis via Iron Regulatory Protein 1 and mitoNEET.</ArticleTitle>
<Pagination>
<MedlinePgn>5463</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41467-019-13237-8</ELocationID>
<Abstract>
<AbstractText>Iron Regulatory Protein 1 (IRP1) is a bifunctional cytosolic iron sensor. When iron levels are normal, IRP1 harbours an iron-sulphur cluster (holo-IRP1), an enzyme with aconitase activity. When iron levels fall, IRP1 loses the cluster (apo-IRP1) and binds to iron-responsive elements (IREs) in messenger RNAs (mRNAs) encoding proteins involved in cellular iron uptake, distribution, and storage. Here we show that mutations in the Drosophila 1,4-Alpha-Glucan Branching Enzyme (AGBE) gene cause porphyria. AGBE was hitherto only linked to glycogen metabolism and a fatal human disorder known as glycogen storage disease type IV. AGBE binds specifically to holo-IRP1 and to mitoNEET, a protein capable of repairing IRP1 iron-sulphur clusters. This interaction ensures nuclear translocation of holo-IRP1 and downregulation of iron-dependent processes, demonstrating that holo-IRP1 functions not just as an aconitase, but throttles target gene expression in anticipation of declining iron requirements.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Huynh</LastName>
<ForeName>Nhan</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg, Edmonton, Alberta, T6G 2E9, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ou</LastName>
<ForeName>Qiuxiang</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg, Edmonton, Alberta, T6G 2E9, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cox</LastName>
<ForeName>Pendleton</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg, Edmonton, Alberta, T6G 2E9, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lill</LastName>
<ForeName>Roland</ForeName>
<Initials>R</Initials>
<Identifier Source="ORCID">0000-0002-8345-6518</Identifier>
<AffiliationInfo>
<Affiliation>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032, Marburg, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043, Marburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>King-Jones</LastName>
<ForeName>Kirst</ForeName>
<Initials>K</Initials>
<Identifier Source="ORCID">0000-0002-9089-8015</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg, Edmonton, Alberta, T6G 2E9, Canada. kirst.king-jones@ualberta.ca.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>MOP 93761</GrantID>
<Agency>CIHR</Agency>
<Country>Canada</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>11</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nat Commun</MedlineTA>
<NlmUniqueID>101528555</NlmUniqueID>
<ISSNLinking>2041-1723</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029721">Drosophila Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026461">Ecdysteroids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007506">Iron-Sulfur Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D024101">Mitochondrial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>42VZT0U6YR</RegistryNumber>
<NameOfSubstance UI="D006418">Heme</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.1.18</RegistryNumber>
<NameOfSubstance UI="D015061">1,4-alpha-Glucan Branching Enzyme</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.2.1.3</RegistryNumber>
<NameOfSubstance UI="D035941">Iron Regulatory Protein 1</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D015061" MajorTopicYN="N">1,4-alpha-Glucan Branching Enzyme</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021581" MajorTopicYN="N">Active Transport, Cell Nucleus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015536" MajorTopicYN="N">Down-Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004330" MajorTopicYN="N">Drosophila</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029721" MajorTopicYN="N">Drosophila Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026461" MajorTopicYN="N">Ecdysteroids</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004702" MajorTopicYN="N">Endocrine Glands</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="N">Gene Expression Regulation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055879" MajorTopicYN="N">Gene Knock-In Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055786" MajorTopicYN="N">Gene Knockout Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006418" MajorTopicYN="N">Heme</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035941" MajorTopicYN="N">Iron Regulatory Protein 1</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007506" MajorTopicYN="N">Iron-Sulfur Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007814" MajorTopicYN="N">Larva</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024101" MajorTopicYN="N">Mitochondrial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011164" MajorTopicYN="N">Porphyrias</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>06</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>10</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31784520</ArticleId>
<ArticleId IdType="doi">10.1038/s41467-019-13237-8</ArticleId>
<ArticleId IdType="pii">10.1038/s41467-019-13237-8</ArticleId>
<ArticleId IdType="pmc">PMC6884552</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>IUBMB Life. 2017 Jun;69(6):399-413</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28387022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(7):e42102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22848718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2016 Jun 20;37(6):558-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27326933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2007 Mar;4(3):207-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17327847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncotarget. 2017 Oct 30;8(65):108786-108801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29312568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2016 Jun 28;16(1):247-262</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27320926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Jan;19(1):807-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9858603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2005 Oct 1;118(Pt 19):4365-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16144863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):E2967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25002478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11667-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19571010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Inherit Metab Dis. 2010 Dec;33 Suppl 3:S83-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20058079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2010;604:55-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20013364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Appl Pharmacol. 2004 May 1;196(3):404-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15094311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2016 Jan 29;470(1):226-232</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26778000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2015 Mar 3;21(3):392-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25738455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2013 Feb 5;17(2):271-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23395173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D1100-D1106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27924013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jul 22;286(29):25756-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21632547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Neurol. 2013 Dec;74(6):914-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23798481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Intern Emerg Med. 2010 Oct;5 Suppl 1:S73-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20865478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D535-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16381927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2017 Jan 26;168(3):344-361</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28129536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2019 Mar 10;30(8):1083-1095</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29463105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2016 May 16;36(11):1655-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27044864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nutrients. 2013 May 17;5(5):1622-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23686013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Sep;9(9):907-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22863883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Oct 08;10(10):e0139699</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26448442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2018 Dec 10;29(17):1756-1773</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28793787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Mar 12;5(3):e9644</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20300197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Oct 10;289(41):28070-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25012650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2015 Dec 1;24(23):6801-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26385640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 Jun 29;129(7):1311-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17604720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Dec 22;270(51):30781-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8530520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2011 Aug 31;12:357</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21880147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2008 Feb;18(1):106-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18261896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2014 Jul 3;158(1):84-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24995980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1998 Jun 29;247(3):592-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9647738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2018 Nov 6;8(11):3593-3605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30213867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Neuropathol. 2008 Nov;116(5):491-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18661138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Sep;1823(9):1468-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22610083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2004 Jul;10(7):1019-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2008 Jun 15;474(2):238-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18314007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Transl Med. 2016 Jun 12;14(1):174</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27290639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2003 Apr;5(4):336-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12629548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2016 Oct;13(10):852-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27595403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2005 Sep;16(9):4163-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15975908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Sep 17;525(7569):339-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26344197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vis Exp. 2014 Apr 23;(86):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24797807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2019 Jan 8;47(D1):D442-D450</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30395289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vis Exp. 2012 Jul 27;(65):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22871650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biochem. 2007 Jul;301(1-2):21-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17200797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 May 22;324(5930):1076-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19461003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2014 Apr;196(4):961-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24478335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Insect Biochem Mol Biol. 2008 Sep;38(9):891-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18675912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Feb 16;7:42571</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28205535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Dec 22;314(5807):1903-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17185597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2014 May;24(5):303-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24314740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jul 7;281(27):18707-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16679315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2001 Feb;27(2):209-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11175792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Aug 13;460(7257):831-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19675643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2007 Jun;39(6):715-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17534367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2013 Feb 5;17(2):282-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23395174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2009 Nov;7(11):e1000238</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19901979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13047-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21788481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fly (Austin). 2016 Apr 2;10(2):73-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27057746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2011;1:75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22355594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2007;8(9):R183</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17784955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):7321-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8041788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2015;559:99-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26096505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 1998 Sep;2(3):383-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9774976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2013 Aug 29;122(9):1658-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23777768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2011 Jul 15;25(14):1476-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21715559</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>Canada</li>
</country>
<region>
<li>District de Giessen</li>
<li>Hesse (Land)</li>
</region>
<settlement>
<li>Marbourg</li>
</settlement>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Huynh, Nhan" sort="Huynh, Nhan" uniqKey="Huynh N" first="Nhan" last="Huynh">Nhan Huynh</name>
</noRegion>
<name sortKey="Cox, Pendleton" sort="Cox, Pendleton" uniqKey="Cox P" first="Pendleton" last="Cox">Pendleton Cox</name>
<name sortKey="King Jones, Kirst" sort="King Jones, Kirst" uniqKey="King Jones K" first="Kirst" last="King-Jones">Kirst King-Jones</name>
<name sortKey="Ou, Qiuxiang" sort="Ou, Qiuxiang" uniqKey="Ou Q" first="Qiuxiang" last="Ou">Qiuxiang Ou</name>
</country>
<country name="Allemagne">
<region name="Hesse (Land)">
<name sortKey="Lill, Roland" sort="Lill, Roland" uniqKey="Lill R" first="Roland" last="Lill">Roland Lill</name>
</region>
<name sortKey="Lill, Roland" sort="Lill, Roland" uniqKey="Lill R" first="Roland" last="Lill">Roland Lill</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/IronSulferCluV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000237 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000237 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    IronSulferCluV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31784520
   |texte=   Glycogen branching enzyme controls cellular iron homeostasis via Iron Regulatory Protein 1 and mitoNEET.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31784520" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IronSulferCluV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:13:39 2020. Site generation: Sat Nov 21 15:14:05 2020